Centre for Theoretical Physics Nijenborgh 4 9747 AG Groningen

TENTAMEN GENERAL RELATIVITY

friday, 26-08-2005, room 5118-156, 14.00-17.00

Indicate at the first page clearly your name, address, date of birth, year of arrival and at every other page your name.

Question 1

Consider a manifold with coordinates X^a $(a = 1, \dots n)$. Let $X^a(u)$ be a curve in that manifold with evolution parameter u.

- (1.1) How do you define the absolute derivative $\frac{D}{Du}V_a$ of a covariant vector field $V_a(x)$?
- (1.2) The absolute derivative of the metric g_{ab} along any curve is zero:

$$\frac{\mathrm{D}}{\mathrm{D}\mathrm{u}}g_{ab} = 0. \tag{1}$$

Use this fact to derive an expression for the Christoffel symbol Γ^c_{ab} in terms of the metric and the derivative of the metric.

Consider the action for a massive particle:

$$S = -\frac{1}{2} \int_{u_1}^{u_2} du \{ \frac{1}{e} \dot{X}^a \dot{X}^b g_{ab} + m^2 e \}.$$
 (2)

Here e > 0 is the Einbein and m a mass parameter.

- (1.3) Show that the action (2) is invariant under the worldline reparametrizations u' = u'(u).
- (1.4) Use the Euler-Lagrange equations

$$\frac{\partial L}{\partial X^a} - \frac{d}{du} \frac{\partial L}{\partial \dot{X}^a} = 0 \tag{3}$$

with the Lagrangian L given by (2) to derive the geodesic equation for $X^a(u)$. Hint: use the gauge e = 1/m.

Question 2

Consider the Robertson-Walker metric for k = 1 (we take c = 1)

$$ds^{2} = dt^{2} - R(t)^{2} \{ d\chi^{2} + \sin^{2}\chi (d\theta^{2} + \sin^{2}\theta d\phi^{2}) \}.$$
 (4)

For the energy-momentum tensor of a perfect fluid the Einstein equations lead to the following relations between the function R(t), the mass density $\rho(t)$ and the pressure p(t):

$$\frac{(\dot{R})^2 + 1}{R^2} = \frac{1}{3}\kappa\rho, \tag{5}$$

$$\dot{\rho} + 3(p+\rho)\frac{\dot{R}}{R} = 0. \tag{6}$$

The dot indicates a differentiation with respect to t and $\kappa = 8\pi G$ (G is Newton's constant).

We first consider the situation of a Friedmann universe with non-relativistic matter, i.e. p = 0.

- (2.1) Show that ρR^3 is constant.
- (2.2) Show that R(t) satisfies the differential equation

$$\left(\frac{dR}{dt}\right)^2 + 1 = \frac{A^2}{R}\,,\tag{7}$$

where A is a constant. We impose the boundary condition that R=0 at t=0. Show that, given these boundary conditions, the solution of the differential equation (7) is given by the equations

$$R = \frac{1}{2}A^2(1 - \cos\psi), (8)$$

$$t = \frac{1}{2}A^2(\psi - \sin\psi) , \qquad (9)$$

where ψ is a parameter. Give the graph of the function R(t). Is this universe open or closed?

We next consider the situation of a Friedmann universe with ultra-relativistic matter, i.e. $p = \frac{1}{3}\rho$.

- (2.3) Show that ρR^4 is constant.
- (2.4) Determine R as a function of t. Take as boundary condition that R = 0 at t = 0. Give the graph of the function R(t). Is this universe open or closed? Hint: follow the same steps as in question (2.2).

Question 3

Consider the Schwarzschild metric (we take c = 1)

$$ds^{2} = \left(1 - \frac{2m}{r}\right)dt^{2} - \left(1 - \frac{2m}{r}\right)^{-1}dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}). \tag{10}$$

(3.1) In the Newtonian limit the time-time component of the metric g_{00} is related to Newton's gravitational potential ϕ as follows (c=1):

$$g_{00} = 1 + 2\phi. (11)$$

Use this equation to show that the parameter m in the Schwarzschild metric (10) is given by

$$m = GM, (12)$$

where G is Newton's constant and M is the mass of the central object.

(3.2) Calculate the expressions for the Christoffel symbols Γ_{tt}^r , Γ_{rr}^r , $\Gamma_{\theta\theta}^r$ and $\Gamma_{\phi\phi}^r$.

For constant r and $\theta = \pi/2$ the metric (10) leads to the following geodesic equations

$$(1 - \frac{2m}{r})\dot{t} = k, \qquad (13)$$

$$r^2\dot{\phi} = h, \tag{14}$$

$$(1 - \frac{2m}{r})\dot{t} = k,$$

$$r^{2}\dot{\phi} = h,$$

$$\frac{m}{r^{2}}(\dot{t})^{2} - r(\dot{\phi})^{2} = 0,$$
(13)
(14)

with k and h constant. The dot \cdot indicates differentation with respect to the parameter u of the geodesic.

- (3.3) A light-ray follows a geodesic around a Schwarzschild black hole for constant $r = r_0$ and $\theta = \pi/2$. Determine the value of r_0 .
- (3.4) Determine the coordinate time Δt that the light ray needs to complete one circular orbit.